

Computer Science
AN OBJECT-ORIENTED TYPE SYSTEM FOR COMPUTATIONAL ALGEBRA
Christina M. Knapp Dr. Robert F. Morse*
University of Evansville
1800 Lincoln Avenue
Evansville, IN 47722
ck38@evansville.edu

The GAP (Groups, Algorithms, Programming) system for computational discrete mathematics
was originally specialized in group theory, but developments in group theoretic algorithms
required the calculation with other mathematical objects, such as vectors, algebras and
polynomials. Computational support for semigroups have also been introduced into the GAP
library which in turn requires its own computational infrastructure including groups, finite
automata and lattices. The purpose of this presentation is to describe the GAP 4 type system and
its use in the design and implementation of lattices in the GAP.

A major design goal of GAP 4 is extensibility so that without rewriting any existing code, new
algebraic objects can be added to the system. This is accomplished by the GAP 4 type system
and it methods selection scheme. In the usual object-oriented approach, methods applicable to an
object are actually or implicitly stored as part of the object. Objects are gathered in classes and
the class of the object actually determines the methods applicable to it. This setup has two major
limitations relative to the requirement of extensibility and the application area of algebraic
computation.

First, identical methods can be associated with more than one object and there is no natural way
of deciding which one should supply the method. For lattices, multiplication (the meet operation)
was implemented for lattice elements. However, lattice elements themselves may be objects
which one may wish to multiply (on both sides) by say rational numbers. In the normal set up
this would inevitably require changes to the existing rational number class. It is clearly
undesirable for an extension to the system to require such modifications to the existing system.
GAP overcomes this by allowing method selection based on types of all arguments and on
certain aspects of the relationship between arguments. Methods are separate from the objects and
allows for definition of methods on other attributes other then type.

Second, in algebraic computations one defines objects in a highly implicit manner. We are given
a set of generators for a lattice and nothing else. As one works with this object we find out
information that can make subsequent calculations more efficient. For example, a lattice is
determined to be a chain then finding the complement of any element is very simple. Hence the
GAP 4 type system allows for the type of an object to change over time to optimize algorithm
efficiency.

*This research was sponsored by an ADVANTAGE Undergraduate Research Grant from the University of
Evansville.

